2024. 1. 5. 17:05ㆍ코딩 도구/LG Aimers
LG Aimers: AI전문가과정 4차
Module 3. 『Machine Learning 개론』
ㅇ 교수 : 서울대학교 김건희
ㅇ 학습목표
본 모듈은 Machine Learning의 기본 개념에 대한 학습 과정입니다. ML이란 무엇인지, Overfitting과 Underfitting의 개념, 최근 많은 관심을 받고 있는 초거대 언어모델에 대해 학습하게 됩니다.
Introduction to ML
-artificial intelligence, Machine Learning, Deep Learning
-Arthur Samuel
: Inventor of alpha-beta pruning in a game tree
-What is Machine Learning?
: Improve on task T, with respect to performance metric P, based on experience E
Examples
• T: Playing chess
• P: Percentage of games won against an opponent
• E: Playing practice games against itself
-Generalization
: 기계 학습의 목표
-No Free Lunch Theorem for ML
: No machine learning algorithm is universally any better than any other.
-Do not try to seek a universal learning algorithm
(No absolute best algorithm)
-Types of Learning
• 1. Supervised learning
• Training data includes desired outputs
• 2. Unsupervised learning
• Training data does not include desired outputs
• 3. Semi-supervised learning
• Some of training data includes desired outputs
• 4. Reinforcement learning
• No fixed dataset but an environment
• Rewards from sequence of actions
-Semi-supervised Learning
Two scenarios
• LU learning: Learning with a small set of Labeled examples and a large set of
Unlabeled examples
• PU learning: Learning with Positive and Unlabeled examples (no labeled negative
examples)
'코딩 도구 > LG Aimers' 카테고리의 다른 글
LG Aimers 4기 그리고 GPT의 발전 (0) | 2024.01.07 |
---|---|
LG Aimers 4기 그리고 Bias and Variance (6) | 2024.01.06 |
LG Aimers 4기 그리고 머신러닝을 위한 수학, Optional Course (2) | 2024.01.05 |
LG Aimers 4기 그리고 세계적인 데이터 과학자 관련 사례 (4) | 2024.01.04 |
LG Aimers 4기 그리고 AI 윤리 관련 용어 (2) | 2024.01.03 |